X-ray probes of ordered electronic phases in strongly correlated systems Riccardo Comin Massachusetts Institute of Technology MIT-BNL workshop, 26 Jul 2017 #### **Outline** - What is a quantum solids - Different forms of electronic crystals - Resonant X-ray Scattering: crystallography for electrons - Charge order in high-temperature superconductors - The frontier: Coherent X-ray nanoscattering and imaging # What is a quantum solid? Defining a quantum solid is not easy Graphite? No Graphene? Yes ## What is a quantum solid? Defining a quantum solid is not easy 66 I shall not today attempt further to define the kinds of material I understand to be embraced within that shorthand description ["quantum solid"], and perhaps I could never succeed in intelligibly doing so. But I know it when I see it $U \ll kT$ Kinetic energy (T) Hoteraction energy $U \gg kT$ Order from disorder Order from disorder Order from disorder #### Strong interactions (U) #### Localized orbitals | hydrogen
1
H | | dorbitals :MENTS | | | | | | | | | | helium
2
He | | | | | | | |-------------------------------|---------------------------|--------------------------|--------------------------|--------------------------------------|------------------------------|-------------------------------|----------------------------|---------------------------|---------------------------|------------------------|---------------------------------|-----------------------------|--------------------------------|-------------------------------|--|--------------------------------------|--|-----------------------------| | athium
3
Li
6,941 | Be
9,0122
magnesium | 3d _x | X | 3d, | " | 36 | 3/3 | 3d | y / | 3d, | 7-4 | ,
y | 5
B
10.811 | 6
C
12.011
sticon | nitrogen
7
N
14.007
phosphorus | Oxygen
8
O
15,999
sulfur | fluorine
9
F
18.998
chlorine | 10
Ne
20,180
argon | | Na
22,990
potassium | Mg
24,305
coldum | 27 | Z | Utanium | X Z | chromium | Z | iron | cotalt | nickel | copper | zine | 13
AI
26,982
gallium | Si
28.096 | 15
P
30.974
arsenic | 16
S
32.065
selenium | 17
CI
35.453
bromine | Ar
39,948
krypton | | 19
K
39.098
rubidium | Ca
40,078 | | SC
44.966
vttrium | ZZ
Ti
47.867
zirconium | 23
V
50.942
niobium | Cr
51.996
molybdenum | Mn
54,938
technetium | Fe
55.845 | 27
Co
58.933 | Ni
58.693 | Cu
63.546
silver | Zn
65.39 | 31
Ga
69.723 | 32
Ge | As
74.922
antimony | 34
Se
78.96
tellurium | 35
Br
79,904
lodine | Kr
83.80
xenon | | 37
Rb
85.468 | 38
Sr
87.62 | | 39
Y
88.906 | 40
Zr
91,224 | 41
Nb
92,906 | Mo
95,94 | Tc | Ru
101.07 | 45
Rh | 46
Pd
106.42 | 47
Ag | 48
Cd | 49
In | 50
Sn | 51
Sb
121.76 | Te
127.60 | 53

 126,90 | Xe
131,29 | | 55
Cs | 56
Ba | 57-70
X | 174.97 | hafnium
72
Hf
178.49 | 73
Ta | tungsten
74
W
183.84 | 75
Re | osmium
76
OS | 192.22 | Pt 195.08 | 90ld
79
Au
196.97 | 80
Hg | thallium
81
TI
204.38 | Pb | Bi
208,98 | Po
1209l | astatine
85
At | Rn | | francium
87
Fr | Ra | 89-102
* * | 103
Lr | rutherfordium
104
Rf | 105
Db | seaborgium
106
Sg | bohrium
107
Bh | hassium
108
Hs | meitnerium
109
Mt | ununntlium
110 | Unununium
111
Uuu | ununbium
112 | 204,30 | Ununquadum
114
Uuq | | [200] | [210] | [222] | | | a marina n | | lanthanum | cerium | praseodymium | neodymium | promethium | samarium | europium | gadelinium | terbium | dysprosium | holmium | erbium | thullium. | ytterbium | 1 | | | *Lanthanide series | | | La
138.91
actinium | Ce | Pr
140.91
protactinium | Nd
144.24
uranium | Pm
[145]
neotunium | Sm
150.36
plutonium | Eu
151,96
americium | Gd
157.25
curlum | 65
Tb
158.93
berkelium | Dy
162.50
californium | Ho
164.93 | 68
Er
167.26
fermium | Tm
168.93 | 70
Yb
173.04
nobelium | 8 | | | * * Actinide series | | | 89
Ac | 90
Th | 91
Pa
231.04 | 92
U
238.03 | 93
Np | 94
Pu | 95
Am | 96
Cm | 97
Bk | 98
Cf | 99
Es | 100
Fm | 101
Md | 102
No | | | Strong interactions (*U*) Localized orbitals Mr. Iron Mr. Nickel #### Ordered states of matter Symmetries defined by space group ## Native symmetries of atomic lattice are broken! #### Electronic crystals #### Phase coexistence La_{0.5}Sr_{1.5}MnO₄ spin/charge/orbital orders all at once! Murakami et al., PRL 80, 1932 (1998) #### vs Phase separation FM and AFM orders competing to become ground state E. Dagotto, Science **309**, 257 (2005) #### Electronic crystals E. Dagotto, Science 309, 257 (2005) How do we detect electronic crystals? We can detect static orders ($\omega = 0$) but also dynamical excitations ($\omega \neq 0$) Valence electrons (shallow) Core electrons (deep, tightly bound) Lattice position — Cross section ~ Z (no. of electrons) Core electrons dominate XRD signal XRD – X-Ray Diffraction #### Resonant scattering Valence electrons (shallow) Core electrons (deep, tightly bound) Lattice position → Resonant enhancement For an x-oriented hole we find $|f_D^{xx}| = 82$ electrons per hole on the resonance maximum, that is, a doped hole scatters as strongly as a Pb atom. Abbamonte et al., Nat. Phys. I, 155 (2005) Photon energy (hv) Photon energy (hv) #### There is no better place than NSLS-II #### Beamline CSX-I: World's brightest and fully coherent facility for soft x-ray scattering beamline (~10¹³ ph/s). #### Beamline SIX: Resonant inelastic x-ray scattering with highest energy resolution (60000 resolving power) Electronic orders in copper oxide high-temperature superconductors (cuprates) #### Structure #### Superconductivity Barisic et al., PNAS 110, 12235 (2013) Keimer et al., Nature 518, 179 (2015) #### Charge order in cuprates Working near resonance is key! #### Charge order in cuprates # Charge ordering in Bi2201 – RXS and STM # Why resonant scattering? $$I_{\text{XRD}}(\boldsymbol{Q}) \propto \left| (\varepsilon' \cdot \varepsilon^*) \sum_{i} f_i(\boldsymbol{Q}) e^{i\boldsymbol{Q} \cdot \boldsymbol{R}_i} \right|^2 \qquad f_i(\boldsymbol{Q}) \xrightarrow[Q \to 0]{} Z_i$$ SCALAR $$I_{\text{RXS}}(\boldsymbol{Q}) \propto \left| \varepsilon_{\alpha}' \cdot \left(\sum_{i} f_{i}^{\alpha\beta}(\boldsymbol{Q}, E) e^{i\boldsymbol{Q} \cdot \boldsymbol{R}_{i}} \right) \cdot \varepsilon_{\beta}^{*} \right|^{2}$$ Phase factor Charge $I_{\rm XRD}$ = 0 $Q \propto Q \times (1 - 1 + 1 - 1)$ Form factor $$I_{\text{XRD}}(\boldsymbol{Q}) \propto \left| (\varepsilon' \cdot \varepsilon^*) \sum_{i} f_i(\boldsymbol{Q}) e^{i\boldsymbol{Q} \cdot \boldsymbol{R}_i} \right|^2 \qquad f_i(\boldsymbol{Q}) \xrightarrow[Q \to 0]{} Z_i$$ SCALAR $$I_{\text{RXS}}(Q) \propto \left| \varepsilon_{\alpha}' \cdot \left(\sum_{i} f_{i}^{\alpha\beta}(Q, E) e^{iQ \cdot R_{i}} \right) \cdot \varepsilon_{\beta}^{*} \right|^{2}$$ TENSOR | Phase factor | | -1 | 1 | -1 | $\propto f_A \cdot (1+1)$ | |--------------|-------|-------|-------|-------|---| | Charge | Q | Q | Q | Q | $-f_B \cdot (1+1)$
= $2 \cdot (f_A - f_B)$ | | Form factor | f_A | f_B | f_A | f_B | $\neq 0$ | # Access the symmetry of the charge (or spin/orbital) distribution # The inner symmetry of charge order **Charge density** *k*-dependence $$\Delta_{CDW}(\mathbf{k}, \mathbf{Q}) = \delta(\mathbf{Q} - \mathbf{Q}^*) \cdot [\Delta_S + \Delta_{S'}(\cos k_x + \cos k_x) + \Delta_d(\cos k_x - \cos k_x)]$$ $$F_{pq}(\pm \boldsymbol{Q}_{CO}) =$$ $$\delta_s egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & \gamma \end{pmatrix}$$ $$\delta_{S'}\begin{pmatrix}\cos\phi & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0\end{pmatrix}$$ $$\delta_d \begin{pmatrix} \cos \phi & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$ #### Revealing the symmetry of charge order in YBCO #### Revealing the symmetry of charge order in YBCO ### The symmetry of electronic excitations (RIXS) ## The symmetry of electronic excitations (RIXS) # The next frontier: Coherent scattering #### Zone-plate focusing optics: 70 nm spot size First case study: spin-density-wave in NdNiO₃ thin films #### RECIPROCAL SPACE Speckle pattern: coherent interference between magnetic domains Coherent magnetic scattering from spin-density wave in NdNiO₃ First case study: spin-density-wave in NdNiO₃ thin films Coherent magnetic scattering from spin-density wave in NdNiO₃ #### REAL SPACE (mapping) Nano-mapping of order parameter First case study: spin-density-wave in NdNiO₃ thin films #### **COHERENT DIFFRACTIVE IMAGING** (phase is guessed and optimized to satisfy external constraints) #### **PTYCHOGRAPHY** (Scan grid + overlap constraints to retrieve phase) #### **PTYCHOGRAPHY** (Scan grid + overlap constraints to retrieve phase) Analysis in progress - Highly-coherent soft X-ray scattering provides a very timely opportunity to push the envelope on spatial resolution. - These new capabilities will prove essential to study naturally inhomogeneous or artificially nanostructured systems. #### Acknowledgments ## MIT Photon Scattering Group Jiarui Li Jonathan Pelliciari Min Gu Kang Zhihai Zhu #### BNL – beamline CSX-I C. Mazzoli A. Barbour S. Wilkins ## Thank you!